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At elevated levels in plasma, homocysteine (Hcy) is a risk factor
for Alzheimer’s1 and cardiovascular diseases.2 Methods for the
direct detection of Hcy are hampered due to interference from
common, structurally related molecules such as cysteine (Cys) and
glutathione (GSH). Hcy analyses are thus performed in conjunction
with chromatographic separations or immunoassays.3 As part of
our program aimed at developing convenient methods for the
selective detection of colorless biomolecules,4 we herein report the
determination of Hcy using inexpensive, commercially available
materials. We apply one of our new techniques toward assaying
Hcy in human blood plasma.

Hcy has been reported to inhibit the oxidation of luminol and
dihydrorhodamine by strong oxidants.5 Hcy also rapidly reduced
ferrylmyoglobin to metmyoglobin.5 In a comparative study of the
ability of GSH, Cys, and Hcy to reduce dehydroascorbic acid
(DHA), Hcy promoted much more significant reduction of DHA
than Cys and GSH. Furthermore, the reduction occurred at Hcy
concentrations that were over an order of magnitude smaller than
those of GSH and Cys.6 Hcy can thus function as a relatively potent
reducing agent, although it is also believed to be a causative agent
of oxidative stress.7 The understanding of hyperhomocysteinemia
and its associated pathogenicity continues to be of significant current
interest.7

A key feature of the chemistry of biological thiols is the delicate
balance between their oxidizing and reducing functions. Oxidizing
thiyl radicals can rapidly equilibrate to reducing, captodative
R-amino carbon-centered radicals under physiological, aerobic
conditions.8 Additionally, reducing disulfide radical anions rapidly
decay to the reducingR-aminoalkyl radicals.8 The equilibria
involved in the free radical chemistry of biological thiols are pH-
dependent and include several radical and recombinant species.

The dication methyl viologen (MV2+) has been previously used
as an oxidant during a detailed investigation of the equilibrium
kinetics of both the reducing disulfide and theR-amino carbon-
centered radicals derived from Hcy, Cys, and GSH.8 Reducing
radical formation was monitored via changes in the UV-vis spectra
of solutions containing the methyl viologen radical cation which
formed in the presence of the biological thiols.8

Importantly, it was surmised that the formation of the reducing
R-aminoalkyl radical derived from Hcy should be particularly
favorable.8a This was attributed to an intramolecular hydrogen
abstraction mechanism which involves a five-membered ring
transition state (Figure 1).8a In contrast, in the cases of Cys and
GSH, H-atom abstraction to afford a reducing carbon-centered
radical would proceed via less-favored four- and nine-membered
ring transition-state geometries, respectively.8a

It should thus be possible to develop conditions for the selective
detection of Hcy.9 We find that upon heating colorless solutions
of MV2+ (4.0 mM) at a very gentle reflux (5 min, pH 7.5, 0.1 M
tris buffer, 100% H2O, 17 mM aminothiol), visual signaling
selective for Hcy is observed (Figure 2). The color formation can

be monitored via the appearance of absorptions at 398 and 605
nm.10

This facile thermal method may be applicable to our recently
reported postcolumn HPLC detection system in which analytes are
heated in a reactor containing a selective indicator.11 We also can
detect Hcy at room temperature in a fashion more amenable to direct
bioassays. The alternative technique employs fluorone black (1).

Upon addition of thiols (Hcy, Cys, GSH, 100µM) to a solution
of 1 (10.0µM) in 70% MeOH/H2O (phosphate buffer, H2O, pH)
7.3), an increase in absorbance occurs at 510 nm in the UV-vis
spectra at room temperature (analysis after 5.0 min).10 The
absorbance increase is greatest for Hcy compared to that for
equimolar amounts of other biothiol analytes.10 Amino acids
such asL-alanine, L-arginine, L-glutamine, L-glycine, L-lysine,
L-methionine,L-serine, andL-threonine do not produce detectable
spectral changes compared to solutions of1 without analyte.10

Our findings suggest a process whereby1 is involved in the redox
chemistry of the thiols.1H NMR studies show that Hcy conversion
to homocystine (disulfide of Hcy) is enhanced in the presence of
1.10 Additionally, the MALDI mass spectrum of products formed
in a solution containing1 and Hcy exhibits prominent peaks for
glycine sodium salt and the disodium and dipotassium salts of a
glycine-derived dimer.10,12 Glycine and its dimerization products
are termination products ofR-amino acid carbon-centered radicals.8b,13

Thiol analysis in biological fluids typically requires disulfide
reduction. This is often accomplished by using phosphines. Since
disulfide radicals (vide supra) are involved in the reduction of
MV2+,8 we propose that PPh3 may inhibit biothiol chemistry,
leading to greater colorimetric selectivity.14

When PPh3 (5 equiv to thiol) is present in a 70% MeOH/H2O
(phosphate buffer pH) 7.3), solution of1 (10 µM), absorbance

Figure 1. Proton abstraction leading to formation of theR-aminoalkyl
radical from the thiyl radical of Hcy (left) and Cys (right).

Figure 2. Selective color change in response to Hcy in solutions of MV2+.
Left to right: no added analyte, cysteine, homocysteine, and glutathione.
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changes only occur in response to Hcy. Insignificant changes are
observed for Cys (Figure 3) and related thiols.10 If a 30-fold molar
excess of Cys (to Hcy) is added to a solution of Hcy (the naturally
occurring proportion of Cys to Hcy15) and1, no absorbance change
is observed corresponding to excess Cys.10

The studies involving MV2+ and1 show that the properties of
biothiols can be controlled to afford selective detection methods.
Furthermore, compound1 shows great potential as a colorimetric
agent in the determination of total Hcy in human plasma by a
standard addition method.16 A calibration curve derived from the
solutions containing added Hcy standards is shown in Figure 4. It
exhibits linearity in the working range from 0 to 15µM, which is
inclusive of the upper limit of healthy Hcy concentration.15 The
percent recovery of Hcy is 102.9( 7.3%. The relative standard
deviation (RSD) is 7.1% (n ) 3). We are currently investigating
monitoring Hcy concentrations well beyond its healthy level in
plasma.1,2 We are also studying further details of the biochemical
and sensing mechanisms. These results will be reported in due
course.

In conclusion, we have developed colorimetric methods for the
selective detection of homocysteine at neutral pH. Methyl viologen
solutions turn color selectively in the presence of Hcy upon heating.
In solutions containing1 and PPh3, we selectively detect Hcy via
UV-vis spectroscopy at room temperature. The latter technique
shows great potential for directly assaying Hcy levels in human
plasma. Current studies in our lab include developing fluorescence
and electrochemical methods based on these results.
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(16) Commercial lyophilized human blood plasma (5.0 mL) is reconstituted
with distilled H2O. Bound thiols are liberated from proteins by stirring
the plasma solution in a commercial disulfide reducing gel, TCEP (tris-
[2-carboxyethyl]phosphine hydroxide). This is followed by deproteiniza-
tion upon addition of MeOH which also contains PPh3 (1.5 × 10-3 M).
After centrifugation (5.0 min, 3000g) the supernatant is filtered through
a 0.45-mm filter. Hcy standards in H2O (0.3 mL, pH) 7.3, phosphate
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respect to the original sample is correlated with the Hcy concentration
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Figure 3. Absorbance (510 nm) vs varying concentrations of Cys and Hcy
in solutions of1 (1.0 × 10-5 M) and PPh3 (4.5 × 10-4 M).

Figure 4. Calibration curve (510 nm) for the determination of Hcy in
human plasma in the presence of PPh3 and 1 after reduction and
deproteinization, using an indirect standard addition approach.A is the
absorbance of plasma sample with added Hcy, andAo is the absorbance of
plasma sample without added standards.
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